MODULE DESCRIPTION FORM

Module Information						
Module Title		Mathematics II		Modu	le Delivery	
Module Type		Basic learning			⊠ Theory	
Module Code		ENG102			⊠Lecture	
ECTS Credits		6				
SWL (hr/sem)		051			- 🛛 Tutorial	
Module Level		1	Semester of Delivery		2	
Administering Dep	partment		College	e Engineering College		
Module Leader	Assist. Lect	Hasan Allawi	e-mail	Hassan.as@uowa.edu.iq		
Module Leader's Acad. Title		Assist. Lect	Module Lea	eader's Qualification		Msc
Module Tutor	Name (if available)		e-mail	E-mail		
Peer Reviewer Name		Name	e-mail	e-mail E-mail		
Scientific Committee Approval Date		1/6/2023	Version Number 1.0			

Relation with other Modules				
Prerequisite module	Mathematics I	Semester	1	
Co-requisites module	None	Semester		

Module Aims, Learning Outcomes and Indicative Contents

Module Aims	The aims of a mathematics module are to provide students with an understanding of mathematical concepts, skills, and techniques that can be applied to a range of real world problems. This course aims to introduce the concepts of calculus, comple- numbers, vectors, and linear algebra. Additionally, the module aims to prepar students for future academic and professional pursuits that require mathematical proficiency.			
	By the end of this module the student should be able to:			
Module Learning Outcomes	 Use asymptotic, first and second derivatives to graph functions. Apply advanced rules/techniques of integration to compute integrals. sketch graphs of functions; approximation of functions. Describe the polar coordinate system. Convert from rectangular coordinates to polar coordinates. Apply matrix techniques and elementary theory to problem in engineering. Solve systems of linear equations and find the inverse of a matrix. Perform the basic algebra operation of vectors. Evaluate the scalar and vector product of two vectors. Evaluate the gradient, divergence and curl of various scalar and vector fields. Complex Numbers: Algebra of complex numbers, Solution of polynomial equations with complex roots, Argand Diagrams, Polar form of complex numbers, Exponential form of complex numbers, and Series expansion of trigonometric and exponential functions, De Moivre's theorem. 			
Indicative Contents	 The Indicative Contents of a Mathematics module will depend on the level and scope of the course. However, some common topics that may be covered in a mathematics module include: Arithmetic: Basic mathematical operations such as addition, subtraction, multiplication, and division. Algebra: The study of mathematical symbols and the rules for manipulating these symbols to solve equations and represent real-world situations. Geometry: The study of shapes, sizes, positions, and measurements of objects in space. Calculus: The study of mathematical concepts such as limits, derivatives, and integrals. Overall, the Indicative Contents of a Mathematics module aims to provide students with a comprehensive understanding of mathematical concepts and their applications in various fields of study. 			

	Learning and Teaching Strategies
Strategies	

The main strategy that will be adopted in delivering this module is to
encourage students' participation in the exercises, while at the same time
refining and expanding their critical thinking skills. This will be achieved
through classes, interactive tutorials and by considering type of simple
experiments involving some sampling activities that are interesting to the
students.

Student Workload (SWL)					
Structured SWL (h/sem)	Structured SWL (h/sem)78Structured SWL (h/w)6				
Unstructured SWL (h/sem)	72	Unstructured SWL (h/w)	4		
Total SWL (h/sem)	150				

Module Evaluation						
		Time/Nu mber	Weight (Marks)	Week Due	Relevant Learning Outcome	
	Quizzes	2	10% (10)	5, 10	LO #1, 2, 10 and 11	
Formative	Assignments	2	10% (10)	2, 12	LO # 3, 4, 6 and 7	
assessment	Projects / Lab.	1	10% (10)	Continuous		
	Report	1	10% (10)	13	LO # 5, 8 and 10	
Summative	Midterm Exam	2hr	10% (10)	7	LO # 1-7	
assessment	Final Exam	3hr	50% (50)	16	All	
Total assessment			100% (100 Marks)			

Delivery Plan (Weekly Syllabus)

	Material Covered
Week 1 Week 2 Week 3	Transcendental Functions: Inverse Functions and Their Derivatives, Natural Logarithms, Exponential Functions, Indeterminate Forms and L'Hôpital's Rule, Inverse Trigonometric Functions, Hyperbolic Functions and their inverse.
Week 4 Week 5	Integration Techniques: Integration by Parts, Trigonometric Integrals, Trigonometric Substitutions, Partial Fractions, Improper Integrals.
Week 6	Polar Coordinates: Polar Coordinates system, Graphing Polar Coordinate Equations, Areas and Lengths in Polar Coordinates
Week 7 Week 8 Week 9	Matrices and Determinants: Definitions, Properties and operations, Determinant, Inverse of a matrix, Solution of linear system equations, Eigenvalues and Eigenvectors.
Week 10 Week 11 Week 12	Vector Theory: Three-Dimensional Coordinate Systems, Representation of vectors in space, unit vectors, Scalar Product, Vector Product, Lines and Planes in Space, Vector Function.
Week 13 Week 14 Week 15	Complex Numbers: Complex numbers and operations, Solution of quadratic equations, The argand diagram, Polar form of a complex number, Demoiver's theorem.
Week 16	Preparatory week before the final Exam

Learning and Teaching Resources				
	Text	Available in the Library?		
Required Texts	George B. Thomas Jr., "CALCULUS", 14th Ed	Yes		
Recommended Texts	 Erwin Kreyszig, "Advanced Engineering Mathematics", 10th Ed. Schaum's Outline of College Mathematics, Fourth Edition. Mary Attenborough, "Mathematics for Electrical Engineering and Computing", 1st Ed. 	No		
Websites	Topics in a Calculus -Wolfram Mathworld.			

Grading Scheme

Group	Grade	Marks (%)	Definition	
	A - Excellent	90 - 100	Outstanding Performance	
Current Current	B - Very Good	80 - 89	Above average with some errors	
Success Group (50 - 100)	C - Good	70 - 79	Sound work with notable errors	
	D - Satisfactory	60 - 69	Fair but with major shortcomings	
	E - Sufficient	50 - 59	Work meets minimum criteria	
Fail Group	FX – Fail	(45-49)	More work required but credit awarded	
(0 – 49)	F - Fail	(0-44)	Considerable amount of work required	

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above.